Introduction to NTMs and Role of Rotation

Abhijit Sen

Institute for Plasma Research, Bhat, Gandhinagar 382 428

4th ITER International Summer School, Austin, TX, USA
31 May – 4 June, 2010

Tokamak Instabilities

- Tokamaks are not minimum energy systems
- They contain pressure and current which can drive instabilities

(courtesy T. Hender)

Tokamak Instabilities

Magnetic field perturbation:

$$\vec{b} = \nabla \varphi \times \nabla \widetilde{\psi}$$

$$\widetilde{\psi}(\varphi, \vartheta, r) = \widetilde{\psi}_{0}(r) \cdot e^{i(n\varphi - m\vartheta)}$$

$$q(r) = \frac{m}{n}$$
 – inside the plasma

$$q(r) = \frac{m}{n}$$
 - inside the plasma $q(r) = \frac{m}{n}$ - outside the plasma

OUTLINE

- What are NTMs and why are they important?
- Simple physical picture of the instability
- Rutherford model equation
- Brief survey of exp'tal observation/ implications for ITER
- RF techniques of stabilization
- Role of rotation
- Outstanding theoretical and experimental issues.

Tearing Modes and Magnetic Reconnection

``Tearing'' of a current sheet

Classical Tearing Modes

- Asymptotic theory- uses two regions of the plasma
 - •Outer region marginal ideal MHD kink mode
 - •Inner region include effects of inertia, resistivity nonlinearity, viscosity etc.

• Matching between inner and outer region

$$\frac{1}{2} \Delta' \psi_1 = \mu_0 R \int_{-\infty}^{\infty} d\rho \oint \frac{d\alpha}{2\pi} \cos(m\alpha) J_{\parallel},$$

•Linear theory : $\gamma \sim (\Delta^{\prime})^{4/5} S^{-3/5}$

Magnetic island evolution in classical tearing modes

• Near mode rational surface $\mathbf{k} \cdot \mathbf{B} = \mathbf{0}$, $B_0 = B(\mathbf{r} = \mathbf{r}_s) - B_\theta(\mathbf{n} \mathbf{q}^f / \mathbf{m})(\mathbf{r} - \mathbf{r}_s) \boldsymbol{\alpha}, \, \boldsymbol{\alpha} = \boldsymbol{\theta} - (\mathbf{n} / \mathbf{m}) \boldsymbol{\varsigma}$ $\delta \mathbf{B} = \delta \mathbf{B}_r \sin(\mathbf{m} \boldsymbol{\alpha}) \mathbf{r}$

- Leads to the formation of a magnetic island
- Island width $w = 4(\delta B_r r_s / B_\theta nq^2)^{1/2}$
- when w > resonant layer thickness nonlinear effects important
- Nonlinear evolution Rutherford regime

$$\frac{dw}{dt} \approx \eta \Delta'$$

$$\Rightarrow$$
 w α t

What are NTMs?

- NTMs are relatively large size magnetic islands that develop slowly at mode rational surfaces with low (m,n) mode numbers in high temperature tokamak plasmas.
- Like the classical TMs they are current driven but the current source is the **bootstrap current** a neoclassical (toroidal geometry driven) source of free energy.
- They limit the attainable β in a tokamak to values well below the ideal MHD limit hence they are a <u>major concern</u> for all reactor grade machines i.e. long pulse (steady state) devices.

 Their temporal evolution is adequately modeled by a generalized form of the Rutherford Equation

Classical Tearing mode:

$$E_{\parallel} = \eta J_{\parallel} \qquad E_{\parallel} \sim -\frac{\partial A_{\parallel}}{\partial t} \qquad J_{\parallel} \sim -\nabla^{2} A_{\parallel}$$

$$\frac{d\delta B}{dt} = \eta \frac{\Delta'}{w} \delta B \qquad \Rightarrow \qquad \frac{dw}{dt} \approx \eta \Delta'$$

 In high temperature tokamaks neoclassical effects need to be retained

Modified Ohm's Law

$$\langle E_{\parallel} \rangle = \eta J_{\parallel} + \frac{1}{neB} \langle B \cdot \nabla \cdot \pi_{\parallel e} \rangle$$

Bootstrap current

$$\frac{1}{neB} < B \cdot \nabla \cdot \pi_{\parallel e} > \approx \frac{\mu_e}{\nu_e} \frac{1}{B_\theta} \frac{dp}{dr} + \eta \frac{\mu_e}{\nu_e} J_{\parallel}$$

Electron viscous stress which describes damping of poloidal electron flows - new free energy source.

Dependence on pressure gradient, also fraction of trapped particles

BOOTSTRAP CURRENT

Projection into a poloidal plane

generated by trapped particles:

example: banana particles

- electrons drift from flux surfaces due to the ∇B-drift
- electrons with low parallel velocity are trapped in the toroidal mirror
 - ⇒ banana orbits
- at the intersection of 2 banana orbits a net current results due to the density gradient
- passing particles exchange momentum with trapped particles
 - ⇒ bootstrap current

similar: helically trapped particles

Modified Rutherford Equation

$$\frac{dw}{dt} = \frac{\eta}{\mu_0} (\Delta' + \frac{D_{nc}}{w})$$

where
$$D_{nc} = -\sqrt{\epsilon} \frac{2\mu_0}{B_0^2} p' \frac{q}{q'} k_0$$

$$p'q' < 0, \quad D_{nc} > 0$$

Unstable for normal tokamak operation

$$p'q' > 0, \quad D_{nc} < 0$$

Stable in reversed shear regions

- Can be unstable for $\Delta' < 0 \Rightarrow w_{sat} = \frac{D_{nc}}{-\Delta'} \approx \frac{r_s \beta_{\theta}}{m}$
- for small islands

$$w \sim \sqrt{\eta t}$$

PHYSICS OF NTM

- •Plasma pressure profile is flattened within the island J_{bs} is turned off
- •This triggers a δJ_{bs} with the same helical pitch as the island
- the corresponding induced δB has the same direction as the initial perturbation and **enhances it**

This picture neglects finite perpendicular thermal conductivity within the island - important for small island widths - leads to **threshold size**.

Finite perpendicular thermal conductivity effect

$$\frac{dw}{dt} = \frac{\eta}{\mu_0} \left(\Delta' + D_{nc} \frac{w}{w^2 + w_c^2}\right)$$
$$w_c \sim \left(\frac{\chi_\perp}{\chi_\parallel}\right)^{1/4} \sqrt{\frac{q^2 R}{mq'}}$$

Threshold - "seed" - island size

$$w_{seed} = -\frac{\Delta' w_c^2}{D_{nc}}$$

NTM characteristics

How is the seed island created?

Effects of NTMs

• Can degrade confinement – fast temperature flattening across island due to high parallel thermal conductivity

$$\frac{\Delta \tau_E}{\tau_E} = 4 \frac{w \rho_s^3}{a^4}$$

 Can cause disruption if island size becomes comparable to distance between mode rational surface and plasma edge (depends on beta_poloidal)

Time evolution of an NTM growth rate

Brief Survey of Experimental Observations on NTMs

Experimental observation of NTMs

- Earliest observations were on TFTR in supershot discharges
- Mainly (3/2) or (4/3) modes with f<50khz
- Degradation of plasma performance with growth of NTM
- Characteristics agreed quite well with Rutherford model estimates

(Z. Chang et al, PRL **74** (1995) 4663)

TFTR

Comparison of "measured" island widths with Rutherford model estimates.

Island Structure Can be Measured by Electron Cyclotron Emission of T_e Fluctuation Radial Profile

- Magnetic surface distortion
 - ★ leads to T_e fluctuation

(Y. Nagayama et al., 1990)

w also measured by magn. Probes:

$$w = 4\sqrt{\frac{q\psi}{q'B_{\theta_s}}} = 4\sqrt{\frac{R_0q}{B_0s}}\rho_s^m \delta B_{\theta,mn,edge}.$$

T Hender et al, Nucl Fus 2002

TFTR

Theory - experiment comparison of saturated island widths

D- III- D observations

A 3/2 mode is excited at t=2250 - saturates beta; at t=3450 a 2/1 mode grows to large amp, locks and disrupts. Ideal beta limit is 3.4

[O. Sauter et al, PoP 4 (1997) 1654]

COMPASS D

Saturated island width scales like β_p

$$w_{sat} = -a_1 \varepsilon^{1/2} \left(\frac{L_q}{L_p} \right) \frac{\beta_p}{\Delta'}$$

[D.A. Gates et al, Nuclear Fusion **37** (1997) 1593]

TFTR

Single helicity NTMs; f<50 kHz

ASDEX UPGRADE

Figure 3. Wavelet plot of an early NTM immediately after a sawtooth crash. The NTM frequency rises during the first 10 ms.

Many experiments have shown a strong correlation between a sawtooth crash and an NTM excitation

ASDEX UPGRADE

Figure 4. $\beta_{N,onset} \cdot I_p$ vs. the ion temperature at the (3,2) radial position, T_i . Additionally the scaling, $\beta_{N,onset} \cdot I_p \propto \sqrt{T_i}$, is shown [2].

ASDEX U

Figure 1. a) Wavelet plot [6] of an NTM. Dark areas represent mode activity. Before the onset of the NTM at 2.126 s fishbone bursts are seen. b) Mirnov signals. The even n signal is dominated by the NTM, the odd n signal by (1,1) modes. c) $\beta_N=\beta_t aB/I$ with $\beta_t=2\mu_0 p/B_t^2$; the arrow indicates the increase of neutral beam injection power from 5 to 7.5 MW.

NTMs can also be triggered by fishbone activity Other triggers: ELMs....

NSTX

- Mode appears at constant poloidal β ($\beta_p \sim 0.4$)
- Slower growth ⇒ resistive mode
- Beam turn off experiment indicates amplitude reduction with stored energy
 - indicative of bootstrap current driven tearing mode

How to eliminate or control NTMs?

- Directly control NTMs through appropriate feedback control schemes
 - ECCD scheme most successful
 - Also ECH
- Get to the trigger: prevent sawtooth crash, prevent large ELMs etc
- Other ideas: profile control, rotation, mode coupling etc

How to Stabilize an NTM?

•Principal Idea: Restore the suppressed bootstrap current within the island

- •localized current drive -- ECCD, LHCD, NB(?)
- •localized heating helical temperature variations modify current profile
- •localized density deposition also changes pressure

• Ohm's law with auxiliary current

$$J_{\parallel}(\Psi) = \frac{1}{\eta} \left\langle E_{\parallel} \right\rangle + \frac{1}{\eta B} \left\langle \mathbf{B} \cdot \nabla \cdot \boldsymbol{\pi}_{\parallel e} \right\rangle + \left\langle J_{\text{aux}} \right\rangle,$$

Modified Rutherford Equation

$$0.82 \frac{dw}{dt} = \frac{1}{\tau_r} \left(\Delta' \rho_s + \frac{D_{nc}}{w} - \frac{D_{\text{aux}}}{w^2} \eta_{\text{aux}} \right),$$

$$D_{\text{aux}} = \frac{I_{\text{aux}} \mu_0 R}{s \psi_s' \rho_s} \frac{16}{\pi}$$
, η_{aux} is an efficiency factor

-

New "phase diagram"

• Stable and unstable fixed points corresponding to saturated island sizes

$$\eta_{\text{aux}} D_{\text{aux}} > \frac{1}{4} \frac{(D_{nc})^2}{(-\Delta' \rho_s)},$$

Condition for complete stabilization

Complete stabilization of a 2/1 NTM in ASDEX-U

Implications for ITER

- Seed island size ~ 5 to 6 cms
- Saturated island size can be about 60 cms limiting $\beta_N \sim 2.2$
- Growth time 30 s to reach 30 cms & about 150 s to reach 60 cms
- Based on modeling and extrapolation from experiments simulating the ITER parametric regime

Local Heating Effects

$$\delta J_{\parallel} = \frac{3}{2} \frac{\delta T_e}{T_{eo}} J_{\parallel o}$$
, helically resonant temperature variations

$$0.82 \frac{dw}{dt} = \frac{1}{\tau_r} \left(\Delta' \rho_s + \frac{D_{nc}}{w} - w D_{\text{heat}} \right),$$

$$D_{\text{heat}} = \frac{16}{5\pi} \frac{q_s}{q_s'} \frac{R \mu_o J_{\parallel o}}{\psi_s'} \frac{S_o \rho_s^2}{n T_e \chi_{\perp}}$$

$$w_{\text{sat},H} = \frac{D_{nc}}{-\Delta' \rho_s} \frac{2}{1 + \sqrt{1 + \Upsilon}},$$

Demonstrated in TEXTOR – complete stabilization of 2/1 mode

E. Westerhof et al, NF 47 (2007) 85

Sen, Kaw and Chandra - IAEA, '98 - NF 2000

• ECRH scheme - self-consistent bootstrap currents created by the driven pressure gradients within the island can provide <u>additional stabilization</u>.

$$0.82 \frac{dw}{dt} = \frac{1}{\tau_r} (\Delta' \rho_s + \frac{D_{nc}}{w} - w D_{heat} - w D_{bs}) \qquad D_{bs} = 0.14 \sqrt{\epsilon} \frac{\mu_o \rho_s^2 R^2}{\psi_s'^2} \frac{q_s}{q_s'} \frac{S_{T0}}{\chi_\perp} \frac{\iota_o''}{\iota_o'}$$

Asymmetry in the island shape makes these currents important

- •Similar currents can arise from deposition of density or momentum within the island e.g. through neutral beams new stabilization scheme proposed
- Feedback suppression of NTMs using modulated neutral beams
- Beam power and energy requirements are quite realistic and achievable.

A. Sen, D. Chandra and P.Kaw, Nucl. Fus. 40 (2000) 707

NTM Control Requires Achieving and Sustaining Dynamic Island/ECCD Alignment

Actuators: Variation of Plasma Position or Toroidal Field Are Used to Regulate Alignment

"Search and Suppress" Algorithm Uses Island Response to Detect Island/ECCD Alignment

- Uncertainty in locations of both island and ECCD comparable to alignment accuracy required (~ 1 cm) ⇒ need systematic search
- "Search and Suppress" algorithm:
 - Vary alignment in steps (e.g. plasma major radius ΔR or toroidal field ΔB_τ)
 - Dwell for specified time to measure island response
 - Freeze if island suppressed
- Adjustable feedback parameters include filters, compensation for plasma motion and rotation
- Actuator limits prevent plasma-limiter contact

Active Tracking of q-Surface Motion Enables Preemptive NTM Suppression

Advantage of early application of ECCD in JT60-U

ITER NTMs stabilisation goals

Impact on Q in case of continuous stabilisation (worst case):

- Q drops from 10 to 5 for a (2,1) NTM and from 10 to 7 for (3,2) NTM
- with 20 MW needed for stabilisation, Q recovers to 7, with 10 MW to Q > 8
- note: if NTMs occur only occasionally, impact of ECCD on Q is small

Active NTM stabilisation in ITER

- Upper ECRH system for active stabilisation of (3,2) and (2,1) islands under development
- Current deposition calculated by means of the TORBEAM code [Poli et al., CPC 1999]

 Driven current smaller than the missing bootstrap current for the present design

[Zohm, Poli et al., EC13 (2004)]

Importance of trigger mechanism (1)

At sawtooth crash, many modes can be triggered

Importance of trigger mechanism (2)

Controlling sawteeth changes significantly β_{onset}

Sauter et al, PRL 2002

Can plasma flows help in the avoidance or control of NTMs?

How can flows affect NTMs?

- Flows can influence both outer layer and inner layer dynamics for resistive modes.
- They can also bring about changes in linear coupling mechanisms such as toroidal coupling between harmonics.
- Past nonlinear studies mainly numerical and often limited to simple situations (e.g. poloidal flows, non-self consistent) reveal interesting effects like oscillating islands, distortion in eigenfunctions etc.
- Also some recent analytic work on the effect of flow on the threshold and dynamical properties of magnetic islands which are relevant to NTMs

Refs: Chen & Morrison, '92, 94; Bondeson & Persson, '86,'88,'89; M.Chu,'98 Dewar & Persson, '93; Pletzer & Dewar, '90,'91,'94; Smolyakov '93,'95

Some recent experimental observations

Main points of investigation

- Effects arising from equilibrium modifications
- Influence on toroidal coupling
- Influence on inner layer physics
- Changes in outer layer dynamics
- Nonlinear changes saturation levels etc.

Equilibrium with toroidal flow

Constant pressure
Surfaces shifted from
Constant flux surfaces

$$p_0 = p_{nf}(\psi_0) \exp\left(\frac{\Gamma}{2} M_s^2(\psi_0) (\hat{R}^2 - \hat{R}_{axis}^2)\right)$$

Maschke & Perrin, Plasma Phys. 22 (1980) 579

Toroidal flow profiles

- 1- differential flow
- 2- sheared flow

Reduction of (2,1) resistive TM growth with differential flow

- stabilizing effect due to equilibrium changes e.g. enhancement of pressure-curvature contribution
- stabilizing effect due to flow induced de-coupling of rational surfaces

Slab or cylinder

$$\Delta' \Psi_s = -i \left(\omega - \Omega_s \right) \tau_L \Psi_s \; ; \quad \Omega_s = \vec{k} \cdot \vec{V}_0$$

$$\gamma = \frac{\Delta'}{\tau_L} \qquad \Omega = \Omega_s$$

Toroidal geometry

$$\Psi_{\text{large}} = \Delta' \Psi$$
 outer response - Δ' matrix

$$\Delta(\omega) = -i \left(\omega - \Omega_j\right) \tau_{Lj} \delta_{ij}$$
 inner response

$$\det\begin{bmatrix} \Delta'_{11} - \Delta_{11}(\omega) & \Delta'_{12} \\ \Delta'_{21} & \Delta'_{22} - \Delta_{22}(\omega) \end{bmatrix} = 0. \quad \text{Quadratic equation}$$

Reduced reconection at the (3,1) surface

- In the presence of finite flow shear the stabilization effect is smaller
- This can be understood and explained quantitatively on the basis of linear slab theory analysis (Chen & Morrison, PF B 2 (1990) 495)

$$\gamma \sim \alpha^{2/5} \Delta'^{4/5} S^{-3/5} \hat{\gamma}$$
 $\hat{\gamma} = \text{flow correction} \geq 1$

$$\hat{\gamma} = \text{flow correction} \ge 1$$

Small flow shear destabilizes the resistive mode through changes in the inner layer dynamics

Recent Experimental Observations

Plan View of DIII-D Tokamak

DIII-D Experiments

- Near-toroidal beams inject energy and momentum
 - ★ net torque varied by ratio of co to counter beams
- Changes in tearing mode saturated amplitude observed
- hybrid scenario
- •sawteething, ELMy H-mode

Plasma Rotation Measured by Charge Exchange Recombination of CVI Line

DIII-D

NTM onset has stronger drive (lower β_{N}) with lower rotation

m/n=3/2 Hybrid Scenario NTM Bigger with Less Flow Shear

Rotation shear appears to play a crucial role on the dynamics of 3/2 NTMs. Sign of shear?

Reduction of 3/2 island size with increasing flow shear in Sawtoothing H mode discharges (DIII-D)

Experimental exploration of Rotation Effects on NTMs

- Similar observations have been made on other tokamaks e.g. JET, AUG, NSTX
- Joint experiments involving a number of machines and analysis involving multi-machine data currently underway as part of ITPA MHD Stability Topical Group initiative
- Story so far.....
 - definite evidence of shear flow effect on NTM onset and saturation
 - some subtle differences between 2/1 and 3/2 behavior.
 - dependence on sign of shear still an unresolved issue
 - Underlying mechanism?
 - inner layer / outer layer modification
 - linear/nonlinear
 - poloidal/toroidal
- Good theoretical understanding is lacking

Flow effects on the inner layer dynamics

- Two fluid model
- Flow terms are additional inertial contributions and modify the the polarization current term

The generalized Ohm's law

$$\underbrace{\mathbf{E} + \mathbf{v} \wedge \mathbf{B}}_{ideal\ MHD} = \underbrace{\eta \mathbf{j}}_{resistive\ MHD} + \underbrace{\frac{1}{\epsilon_0 \omega_{pe}^2 (1 + \nu)} [\frac{\partial \mathbf{j}}{\partial t} + \nabla ...]}_{electron\ inertia} + \underbrace{\sum \frac{q_{\alpha}}{m_{\alpha}} (\nabla p_{\alpha} + \nabla \cdot \Pi_{\alpha})}_{closures},$$

Modified Rutherford Equation for NTMs

differential flow

Pressure/curvature

Neoclassical current

flow shear

$$0.41 \frac{\partial W}{\partial t} = D_R^{neo} \left[\frac{\Delta_c'}{4} - \frac{19.5}{W} \frac{\epsilon L_s^2}{B_0^2} \frac{\partial p(0)}{\partial \psi} + 0.58 \frac{\sqrt{\epsilon} \beta_{\theta} \frac{L_q}{L_p}}{W^2} \frac{W^2}{W^2 + W_{\chi}^2} \right. \\ + \frac{L_s^2}{k_{\theta}^2 v_A^2} \left(2.3 \frac{(\omega - \omega_E)(\omega - \omega_E - \omega_*)}{W^3} + 0.24 \frac{{\omega_E'}^2}{W} \right) - 0.77 \frac{L_s}{k_{\theta} v_A} \frac{\bar{v}_{||0}}{v_A} \frac{{\omega_E'}}{W} \right]$$

polarization current

$$W_{sat} \sim \frac{\beta_{\theta}}{(-\Delta')} \frac{L_q}{L_p}$$

Experimental evidence suggests that β_{θ} and $\frac{L_q}{L_p}$ do not change significantly with changing flow

So something could be happening to Δ'

What is the dependence of Δ' on flow shear?

Heuristic Model

- rotation shear provides additional drive to alter field line pitch
- can increase or decrease field line bending energy and thereby change Δ'

$$\Delta' r_s = C_1 + C_2 \left(-\frac{d\omega_\phi}{dR} L_s \tau_A \right) \qquad \textit{Simplest empirical form}$$

Can one see this scaling from theoretical models?

- RMHD code
- Newcomb eqn. with flow

Code NEAR

- NEAR fully nonlinear toroidal code that solves a set of RMHD eqns. and contains neoclassical viscous terms as well as toroidal flow
- Has been benchmarked to reproduce linear (classical) tearing mode dynamics as well as nonlinear saturated behaviour
- It has also reproduced well the dynamics of NTMs e.g. threshold dynamics, scaling with β_p , island saturation etc.

(D. Chandra, A. Sen, P. Kaw, M.P. Bora and S. Kruger, Nuc. Fus. 45 (2005) 524)

ullet Have examined the scaling of Δ' with toroidal flow shear for classical tearing modes

Model Equations (GRMHD)

$$\frac{\partial \Psi}{\partial t} - (\boldsymbol{b}_0 + \boldsymbol{b}_1) \cdot \nabla \phi_1 - \boldsymbol{b}_1 \cdot \nabla \phi_0 = \eta \tilde{J}_{||} - \frac{1}{ne} \boldsymbol{b}_0 \cdot \nabla \cdot \boldsymbol{\Pi}_e$$

bootstrap current

$$\nabla \cdot \left(\frac{\rho}{B_0} \frac{d}{dt} \frac{\nabla \phi_1}{B_0} \right) + (\boldsymbol{V}_1 \cdot \nabla) \left(\nabla \cdot \left(\frac{\rho}{B_0} \frac{\nabla \phi_0}{B_0} \right) \right) \\ = (\boldsymbol{B}_0 \cdot \nabla) \frac{\tilde{J}_{||}}{B_0} + (\boldsymbol{B}_1 \cdot \nabla) \frac{J_{T||}}{B_0} \\ + \nabla \cdot \frac{\boldsymbol{B}_0 \times \nabla p_1}{B_0^2} \\ + \nabla \cdot \frac{\boldsymbol{B}_0}{B_0^2} \times \nabla \cdot \boldsymbol{\Pi}$$

$$\frac{dp_1}{dt} + (\boldsymbol{V}_1 \cdot \nabla)p_0 + \Gamma p_T \nabla \cdot \boldsymbol{V}_1 = (\Gamma - 1) \left[\eta J_{T||}^2 - \boldsymbol{\Pi} : \nabla \boldsymbol{V} + \boldsymbol{\Pi}_{\boldsymbol{e}} : \nabla \frac{\boldsymbol{J}}{ne} - \nabla \cdot \boldsymbol{q} \right]$$

heat flow

$$\rho \frac{d\widetilde{V}_{||}}{dt} + (\boldsymbol{V}_{1} \cdot \nabla)V_{||_{0}} = -\boldsymbol{b}_{0} \cdot \nabla p_{1} - \boldsymbol{b}_{1} \cdot \nabla p_{T} - \boldsymbol{b}_{0} \cdot \nabla \cdot \boldsymbol{\Pi}$$

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \boldsymbol{V} \cdot \nabla$$

$$\boldsymbol{V} = \Omega(\psi)R^2\boldsymbol{\nabla}\zeta + \boldsymbol{V}_1 = \frac{\boldsymbol{B}_0 \times \nabla\Phi_0}{B_0^2} + V_{0\parallel}\boldsymbol{b}_0 + \frac{\boldsymbol{B}_0 \times \nabla\Phi_1}{B_0^2} + \tilde{V}_{\parallel}\boldsymbol{b}_T$$

Equilibrium flow

Neoclassical closure

$$\vec{\nabla} \cdot \Pi_s = \rho_s \mu_s \left\langle B^2 \right\rangle \frac{\vec{V}_s \cdot \vec{\nabla} \Theta}{\left(\vec{B} \cdot \vec{\nabla} \Theta \right)^2} \vec{\nabla} \Theta,$$

- appropriate for long mean free path limit
- reproduces poloidal flow damping
- gives appropriate perturbed bootstrap current

Numerical simulation

- **GRMHD** eqns solved using code *NEAR* toroidal initial value code Fourier decomposition in the poloidal and toroidal directions and central finite differencing in the flux coordinate direction.
- Equilibrium generated from another independent code TOQ
- Typical runs are made at S ~ 10^5 , low β , sub-Alfvenic flows
- Linear benchmarking done for classical resistive modes
- For NTMs threshold, island saturation etc. benchmarked in the absence of flows.
- Present study restricted to sheared toroidal flows

Determination of Δ /

• Linear growth rate :

$$\gamma = C (\Delta')^{4/5} S^{-3/5}$$

• Nonlinear growth close to saturation

$$\frac{dW}{dt} = \Delta'(1 - \frac{W}{W_{sat}})$$

• Cross check linear and nonlinear results without flow and make runs with flow

Profile with positive flow shear at (2,1) surface

• Looked at single helicity mode dynamics

Results from NEAR

Newcomb Equation with sheared flow:

$$H\frac{d^2\psi}{dr^2} + \left(\frac{dH}{dr} + h_f\right)\frac{d\psi}{dr} - \left[\frac{g}{F^2} + \frac{g_f}{F^2} + \frac{1}{F}\frac{d}{dr}\left(H\frac{dF}{dr}\right)\right]\psi = 0$$

 $\mathbf{h_f}$ and $\mathbf{g_f}$ are additional contributions due to flow

- Limit: h_f, g_f → 0, Furth, Rutherford, Selberg equation
 [Phys. Fluids 16, 1054 (1973)]
 - Limit: slab geometry, (1/r) → 0, d/dr → d/dx, m/r ⋈ k_y

 Chen-Morrison Equation [Phys. Fluids B 2, 495 (1990)]

$$\Delta' = -\frac{1}{r_s \psi_s^2} \int_0^a \left[\left(\frac{d\psi}{dr} \right)^2 + \left\{ \frac{g}{HF^2} + \frac{1}{HF} \frac{d}{dr} \left(H \frac{dF}{dr} \right) - \frac{2m^2 k_z^2}{(k_z^2 r^2 + m^2)^2} + \frac{g_f}{HF^2} + \frac{1}{2r} \frac{d}{dr} \left(\frac{rh_f}{H} \right) \right\} \psi^2 \right] r dr$$

• The value of Δ / quite sensitive to the magnetic and flow profiles

Quantitative comparisons with NEAR results are presently in progress

- Necessary to carry out better numerical investigations e.g. using PEST3 or other codes and from Newcomb's equation
- Need analytic modeling for better understanding of the underlying physics
- On going activity within the ITPA MHD Topical Group including effect of flow on the sawtooth instability

Outstanding Theoretical and Experimental Issues for NTMs

Island width threshold

- perpendicular heat transport local model improvements necessary active ongoing theoretical effort
- neoclassical/ion polarization effects several open theoretical questions (role of drift waves, ion viscosity effects at high temp, the exact value of the mode frequency, role of energetic ions etc.) - experimental determination also a challenge.

Seed Island formation

- `standard' NTM initiated by outside MHD event proper modeling necessary
- 'seedless' NTMs have been seen on TFTR/MAST
 - •coupling to an ideal perturbed mode
 - • Δ / > 0 modes nonlinearly saturating at small levels?
 - •Small scale islands modulated by ion population?
 - turbulence induced trigger

Local Current Drive stabilization

•works well when island O point is hit - optimization methods being worked out.

Non-resonant Helical perturbation

- works well experimentally but mechanism not well understood theoretically
- slows down rotation affects other modes e.g. resistive wall mode
- Interaction of fast particles with NTMs open problem
- Plasma Rotation Effects on NTM open problem

New NTM regime – Frequently Interrupted Regime

- Happens at higher $\beta_N > 2.3$
- Growth of the NTM is often interrupted by drops in amplitude
- Observed for (3,2) modes in AUG and JET
- Confinement degradation is markedly reduced so a benign regime
- Possible mechanism nonlinear coupling between (3,2) NTM, (1,1) and (4,3) mode.

Concluding Remarks

- NTMs are large size magnetic islands driven by neoclassical effects
- Basic physics fairly well understood modified Rutherford eqn.
- Can have a major impact on tokamak performance by **limiting** β
- Experimentally widely observed in several tokamaks
- ECCD method of stabilization works well and is understood
- Still many experimental features (seed island, FJs, non-resonant stabilization etc.) are not well understood.
- •Active area of research offering opportunities for theoretical and experimental insight into reconnection and MHD control issues.